No antibiotics used but antibiotic
resistance genes were activated.
The use of antibiotics has favoured the
spread of antibiotic-resistant (AR) microorganisms in the environment and it
can become an issue for the future ability to treat infectious diseases. In the
group of AR bacteria there are also fecal and human intestinal species such as
Enterococci (also used as fecal indicator bacteria in water quality monitoring)
that are able to transmit AR genes to other bacteria by horizontal gene transfer
mechanisms thus increasing the diffusion of resistance genes in the marine
environment.
In this work the authors focus the research
on the distribution of antibiotic resistant enterococci in sediments of aquaculture
sites. Why this location? Fish-farms are places where AR can be favoured by
large use of antibiotics. Even without continuous antibiotic administration, in
these places resistant bacteria can survive and grow in sheltered environments with
good supply of nutrients and organic matter (such as in sediment of fish-farm
ponds). They chose two sampling sites inside a fish-farm pond (Station 1, near
the fish feeding area; Station 2 far from the feeding area) and one sampling
site (Station 3 in the water supply channel) as control, outside and upstream
of the pond. This fish-farm pond contain 14000 seabream and seabass and it is
located in central Italy (Varano Lagoon) near my home town.
To investigate the presence of Enterococcus in the sediments and to
screen the occurrence of resistant genes, the authors used molecular tools (qPCR
for counting cells, PCR for detecting the presence of specific AR genes) and
culture techniques (with/without adding antibiotics in culture medium). They
analysed the sediment grains sizes and the quantity of organic matter finding
St. 1 and St. 2 dominated by silt-clay
fraction of grains (93% and 89%) and high organic matter content (28,3 mg/g and
24,3 mg/g), whereas St. 3 presented less silt-clay fraction (73%) and less
organic matter (13,4 mg/g). They also analyse the presence of AR genes directly
from sediment sample finding very low number or nothing at all and this result
is in accordance with not-used antibiotics declared by the fish-farm owner.
They analysed the resistance for the
antibiotics (tetracycline TET, erythromycin ERY, ampicillin AMP and gentamycin
CN) counting the number of bacteria before and after incubation with antibiotic-added
culture medium (so no-antibiotics is the reference). Fig 1.
From the Fig 1. is easy to see that the number of enterococci is quite similar in the three stations before adding antibiotics. This situation change significantly after the antibiotics treatment showing clearly the absence of resistant enterococci in the St 3. Significant differences were found between different antibiotics: AMP and CN increase from 4-time to 11-time the number of cell in both St. 1 and St. 2; TET and ERY decrease in both stations. An interesting result is that although AR genes were not found before antibiotic treatment, after that the AR genes were amplified, allowing the enterococci to grow. The authors hypothesized that difference between inside and outside the pond can be caused by many factors and possible sources of resistant enterococci for example wild bird populations that also feed on the fish pond more than outside and could be an additional load of resistant bacteria. Also the high amount and supply of organic matter and fecal material from the fishes can contribute to keep the benthic enterococci more metabolically active thus allowing them to quickly adapt to the antibiotic exposure.
Di Cesare, A., Luna, G. M., Vignaroli, C., Pasquaroli, S., Tota, S., Paroncini, P., & Biavasco, F. (2013). Aquaculture can promote the presence and spread of antibiotic-resistant enterococci in marine sediments. PloS one, 8(4), e62838.
|
No comments:
Post a Comment